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Knowing which mode of combinatorial regulation �typically, AND or OR logic operation� that a gene
employs is important for determining its function in regulatory networks. Here, we introduce a dynamic
cross-correlation function between the output of a gene and its upstream regulator concentrations for signatures
of combinatorial regulation in gene expression noise. We find that such a correlation function with respect to
the correlation time near the peak close to the point of the zero correlation time is always upward convex in the
case of AND logic whereas is always downward convex in the case of OR logic, whichever sources of noise
�intrinsic or extrinsic or both�. In turn, this fact implies a means for inferring regulatory synergies from
available experimental data. The extensions and applications are discussed.
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I. INTRODUCTION

Cells live in a complex environment and continuously
have to make decisions for different signals that they sense.
A challenge in systems biology is to understand how signals
are integrated. As the central information-processing units of
living cells, transcription regulatory networks allow them to
integrate different signals and generate specific responses of
genes. The elementary computations are performed at the
cis-regulatory regions of the genes. The transcription rate of
each gene �the output� is a function of the active concentra-
tions of each of the input transcription factors �TFs� �1�.
Such a quantitative mapping between the regulator concen-
trations and the output of the regulated gene is known as the
cis-regulatory input function �CRIF�, which can be modeled
by Boolean logics �2,3� in analogy with Boolean calculations
that basic electronic devices perform �4�. For example, two
activators regulate a gene with AND or OR logic operation
�refer to Fig. 1�. In fact, AND and OR logic gates are the
most frequently accounted instances in the biological litera-
ture, surely due to their simplicity and widespread represen-
tation in many regulatory processes. For example, the vari-
ants of the lac promoter display AND and OR behaviors by
introducing point mutations �5�. Other examples include that
Pu variants with stronger binding sequences for specific
RNAP make the regulatory module XylR/m-xylene/Pu a ro-
bust AND gate �6�; the gene FliLMnoPQR, which makes up

the flagella motor, is combinatorially regulated by activator
FlhDC and activator FliA with OR logic gate �7�. The notion
of logic operations can also be generalized by introducing a
continuous function that encodes the dependence of the rate
of transcription on the concentrations of inputs �1�. Knowing
which mode of combinatorial regulation that a gene employs
is important for determining its function in regulatory net-
works. For example, the cis-regulatory module drives cellu-
lar patterns differently depending on how the gene integrates
intracellular and extracellular signals at its regulatory region
by endogenous and exogenous transcription factors �8,9�.

Experiments performed on single cells have revealed that
because TFs are often present in low copy numbers, stochas-
tic fluctuations or noise in the concentrations of these mol-
ecules can have significant influences on gene regulation
�10–13�. The traditional fluctuation-dissipation relation de-
rived by the linear noise approach �14� based on the master
equation gives the information only about the second-order
moments. Recently, a modified fluctuation-dissipation rela-
tion was derived by Warmflash and Dinner �15�, which re-
lates some third-order moments evaluated at the system
steady state to the derivatives of a CRIF. Such a static cross
correlation provides the information only about how three
time series are correlated at the zero correlation time. From
viewpoints of gene regulation, however, the binding of TFs
to the DNA is context dependent, active in some genetic
states but not in others. In particular, stochastic fluctuations
or “noise” in gene expression propagate from active inputs to
the outputs of regulated genes during signal integration.
Thus, dynamic cross correlations �16,17� would provide a
noninvasive means to probe modes of combinatorial regula-
tion in gene expression noise. The purpose of this paper is to
demonstrate its potentials in detecting signatures of combi-
natorial interaction. Regarding the study of combinatorial
regulation, there are other works �18–22�. Usually, these pa-
pers used some real time-course microarray data to test their
algorithms and identify some synergistic TFs, e.g., Chen et
al. �19�, used a kinetic model to select the combinatorial
control of multiple TFs: selection of thermodynamic models
for combinatorial control of multiple TFs in early differen-
tiation of embryonic stem cell.
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FIG. 1. �Color online� Schematic illustration of cis-regulatory
constructs. The regulatory functions are realized through the regu-
lated recruitment of transcription factors and RNA polymerase
�RNAP�.
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Thanks to the idea of two recent works �15,17�, we intro-
duce dynamic three-point cross correlation that relates the
output of a gene to its inputs �more precisely, the dynamic
cross correlation is defined as the convolution of the output
and input signals�. Such a correlation function has the fol-
lowing advantages. �1� It can be used to deal with the simul-
taneous presence of intrinsic and extrinsic noise. �2� It is the
generalization of the fluctuation-based relations derived by
Warmflash and Dinner �15� �in fact, the static three-point
cross correlation derived by Warmflash and Dinner is a par-
ticular dynamic three-point cross correlation at the zero cor-
relation time� and can be used to more efficiently identify the
modes of combinatorial gene regulation from experimentally
measured time series of the concentrations of the species
composing the regulatory process. �3� It can even be used to
probe the activity states of regulatory links.

For clarity and simplicity, in this paper we consider only
the case that two input transcription factors regulate the ex-
pression of a gene �whose level is taken as the output� with
AND or OR logic operations. Interestingly, we find that the
cross-correlation curve with respect to the correlation time
near the peak is upward convex in the case of AND, whereas
downward convex in the case of OR. In particular, we show
the different effects of intrinsic and extrinsic noises on the
dynamic cross correlations, e.g., the intrinsic noise deter-
mines the convexity of the cross-correlation curves, whereas
the extrinsic noise generally does not affect the convexity but
can shift the location of the correlation curve upwards. Ac-
cording to the convexity of the cross-correlation curve, we
can in turn distinguish the AND operation from the OR op-
eration. In addition, we find that there is always a time lag
between the extreme point of the cross-correlation function
and the zero correlation time, which can be used to deter-
mine the direction of interactions among regulators. For this,
we give some discussions in the final section.

II. GEOMETRIC CHARACTERISTICS OF CROSS
CORRELATIONS IN A REAL GENETIC CIRCUIT

Before presenting our theoretical results, let us examine a
real biological example. Consider a genetic circuit based on
the phage-� operon �15,23�. In the construct of this system,
the PRM promoter and OR2 binding site are in their natural
locations and an additional binding site for the Escherichia
coli lac activator cyclic AMP receptor protein �CRP� is lo-
cated upstream; the gene cI activates transcription by binding
to OR2 and the output is lacZ. The original construct is an
AND logic gate. Similarly, we can also construct an OR
logic gate by a few point mutations �5,24�.

Denote by Di�i=0,1 ,2� as the DNA regulatory sequences
of genes, which encode proteins lacZ, CRP, and cI �Si�i
=0,1 ,2��, respectively. Also, denote by Mi�i=0,1 ,2� as the
mRNA molecules and P as the RNA polymerase. The genes
can randomly produce and degradate the proteins with the
same rate, but the production or degradation depends on the
state of the operator Di�i=0,1 ,2�. The cis-regulatory con-
structs are schematically shown in Fig. 1, where TFs S1 and
S2 are taken as inputs, whereas S0 as the output. Assume that
TFs S1 and S2 can combinatorially bind to the operator D0 in

the form of monomer. In the case of AND gate, the output
gene can be expressed only when both input TFs S1 and S2
bind to the operator D0 cooperatively. In the case of OR gate,
however, the output gene can be transcribed when one or
both of the input TFs bind to the target operator. The param-
eters listed in Table I for the OR logic gate are from Ref.
�15�, which are used to simulate the idealized logic gates.
The parameters for the AND logic gate are the same as for
the OR logic gate except that the transcription rates are set to
zero when only one input TF binds to D0.

In order to illustrate sources of noise, such as the presence
of intrinsic noise only and the simultaneous presence of ex-
trinsic and intrinsic noises, we give the corresponding chemi-
cal reactions separately in Tables I and II, which are divided
into two categories: reversible �DNA-binding reactions and
multimerization� and irreversible �transcription, translation,
and degradation�. In the idealized logic gate �Table I�, we
assume that the rate of the DNA state change is fast enough
and the fluctuating DNA state has been replaced with the
equilibrated state by neglecting the explicit dynamics of
DNA state alteration �which is called the adiabatic approxi-
mation� �25�. In this strong adiabatic limit, the stochastic
fluctuations in three genes involved in logic gates lead to the
so-called intrinsic noise. Since the DNA state alters much
more slowly in eukaryotes than in prokaryotes, the actual
dynamics of the DNA state can be in the weakly adiabatic or
nonadiabatic situation, which can be modeled by transitions
between “on” and “off” states. In addition, genes in a single
cell may be affected by some global fluctuations �i.e., so-

TABLE I. Reactions and parameter values for simulations of the
logic gate in the idealized system �used in the presence of intrinsic
noise only�. The reactions include the TF binding to the DNA pro-
moter, transcription, translation, and degradation of mRNAs and
proteins.

Descriptions Reactions kf kb

Transcription �→M1 5

Translation M1→M1+S1 10

mRNA degradation M1→� 1

Protein degradation S1→� 1

Transcription �→M2 5

Translation M2→M2+S2 10

mRNA degradation M2→� 1

Protein degradation S2→� 1

RNAP binding to DNA promoter D0+S1�D0S1 10 500

RNAP binding to DNA promoter D0+S2�D0S2 10 500

S2 binding to D0S1 complex D0S1+S2�D0S1S2 10 250

S1 binding to D0S2 complex D0S2+S1�D0S1S2 10 250

Transcription D0→D0+M0 0

Transcription D0S1→D0S1+M0 20

Transcription D0S2→D0S2+M0 20

Transcription D0S1S2→D0S1S2+M0 20

Translation M0→M0+S0 10

mRNA degradation M0→� 1

Protein degradation S0→� 1
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called extrinsic noise� �26�, such as fluctuations in the num-
ber of RNA polymerase molecules or ribosomes, and varia-
tions in cell sizes. To explore the effect of extrinsic noise in
more natural setting, we explicitly include the detailed pro-
cesses, such as the DNA-binding proteins to recruit RNA
polymerase and DNA state, in an extended set of chemical
reactions �see Table II�.

We perform realistic stochastic simulations of the whole
circuit by using biologically reasonable parameter values and
obtain three time series data of input TFs S1�t� and S2�t� and
the output S0�t�, according to the Gillespie algorithm �27�.
We expect these simulations to faithfully reflect the biologi-
cal system because the phage-� is a well-studied system for
which many parameters are measured and comparable mod-
els are capable of accurately reproducing distributions of
protein concentrations in prokaryotic systems �28,29�. First,
for two signals X1�t� and X2�t�, we define the two-point dy-
namic correlation as

Rx1,x2
��� = � 1

N − ��� �
n=1

N−���

x̃1�n�x̃2�n + �� , � � 0

Rx2,x1
�− �� , � � 0,

� �1�

where x̃i=Xi−
1
N�n=1

N Xi�n� with N being the number of point
series. Then, we can similarly define the three-point dynamic

cross-correlation function Rs1s2,s0
��� if we let X1=S1S2 and

X2=S0, and the four-point dynamic cross-correlation function
Rs1s2,s1s2

��� if we let X1=S1S2 and X2=S1S2. The three-point
correlation function is normalized to

R��� =
Rs1s1,s0

���

	Rs1s2,s1s2
�0�	Rs0,s0

�0�
. �2�

Figure 2 shows the dependence of the normalized dy-
namic cross-correlation function R��� on the correlation time
�. Apparently, the correlation curve near the peak point close
to the zero correlation time is upward convex for AND op-
eration and downward convex for OR operation, whichever
the sources of noise �intrinsic or extrinsic noise�.

III. THEORETICAL ANALYSIS

The anticorrelation relationship between the convexity of
dynamic cross-correlation functions for AND and OR opera-
tions as shown in the above section is not a casual finding
but is a general fact. In what follows, we will analytically
verify this point using a simple yet general model as sche-
matized in Fig. 1.

A. Mathematical model

For the system described in Fig. 1, the corresponding bio-
chemical process is modeled with the production and degra-

TABLE II. Reactions and parameter values for simulations of the logic gate �used in simultaneous
presence of intrinsic and extrinsic noise�. The reactions also include the TF and RNA polymerase binding to
the DNA promoter, transcription, translation, degradation of mRNAs and proteins, and DNA-binding proteins
to recruit RNA polymerase and DNA state.

Descriptions Reactions kf kb

RNAP binding to DNA promoter D1+ P�D1P 10 500

Transcription D1P→D1P+M1 5

Translation M1→M1+S1 10

mRNA degradation M1→� 1.3

Protein degradation S1→� 1

RNAP binding to DNA promoter D2+ P�D2P 10 500

Transcription D2P→D2P+M2 5

Translation M2→M2+S2 10

mRNA degradation M2→� 1.3

Protein degradation S2→� 1

RNAP binding to DNA promoter D0+ P�D0P 10 960

S1 binding to D0P complex D0P+S1�D0PS1 10 500

S2 binding to D0P complex D0P+S2�D0PS2 10 500

S2 binding to D0PS1 complex D0PS1+S2�D0PS1S2 10 250

S1 binding to D0PS2 complex D0PS2+S1�D0PS1S2 10 250

Transcription D0P→D0P+M0 0

Transcription D0S1P→D0S1P+M0 20

Transcription D0S2P→D0S2P+M0 20

Transcription D0PS1S2→D0PS1S2+M0 20

Translation M0→M0+S0 10

mRNA degradation M0→� 1.3

Protein degradation S0→� 1
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dation of the transcription factors and the output only

�→
�1

S1→
�1

� ,

�→
�2

S2→
�2

� ,

� →
CRIF�S1,S2�

S0→
�0

� , �3�

where S1 and S2 represent the TF inputs to cis-regulatory
module, S0 is the measured output of the regulated gene, and
arrows from and to � denote synthesis and degradation, re-
spectively. The production rate of S0 is determined by the
concentrations of the TFs and is encoded in the �dimension-
less� CRIF�S1 ,S2�.

When modeling the motion of individual species, we
adapt the following standard Langevin equations:

dS1

dt
= �1 + E + I1 − �1S1,

dS2

dt
= �2 + E + I2 − �2S2,

dS0

dt
= E + I0 − �0S0 + CRIF�S1,S2� . �4�

These equations include terms for protein production rate
��i , i=1,2�, protein degradation and dilution rate ��i , i
=0,1 ,2�, and the contributions of intrinsic and extrinsic
noise sources �Ii , i=0,1 ,2 and E, respectively�. Here, the
extrinsic noise E is defined as a stochastic fluctuation to glo-
bally measured components, whereas the intrinsic noise is
assumed as stochastic fluctuations in the gene expressions.
Noise sources are modeled using Ornstein-Uhlenbeck pro-
cesses by

dE

dt
= − �EE + �E	E,

dIi

dt
= − 
iIi + �i	i. �5�

Assume that the white-noise terms 	E , 	1 , 	2 and 	0 are
independent, identically distributed processes with the zero
mean and the unit standard deviation. The parameters � and

 define the time scale of the noise, while �E and �i set the
standard deviation.

B. Analytic expressions of dynamic correlation functions

Denote Si
eq=

�i

�i
, i=1,2. We expect perturbations due to

noise to be so small that it might be valid to approximate our
system using the second-order Taylor expansion of CRIF at
the origin. Define si=Si−Si

eq �i=0,1 ,2�, where S0
eq

=CRIF�S1
eq ,S2

eq�+a0 with a0=
g11

2 

s1
2��t+g12

s1s2��t

+
g22

2 

s2
2��t in which the outside bracket represents the aver-

age over the time t, and g11, g12, g22 are two-order deriva-
tives of the function CRIF with respect to variables S1 and S2
evaluated at the point �S1

eq ,S2
eq�. This will result in the fol-

lowing equations:

ds1

dt
= E + I1 − �1s1,

ds2

dt
= E + I2 − �2s2,

ds0

dt
= E + I0 − �0s0 + g1s1 + g2s2 +

g11

2
s1

2 + g12s1s2 +
g22

2
s2

2

− a0. �6�

For simplicity, we let �=�i and 
=
i �0� i�2�, and addi-
tionally, assume ��
 , ��2
. By calculation, we find a0

=
�g11+2g12+g11��E

2

8�3 +
g11�1

2+g22�2
2

4�
��+
� �see the Appendix�. In addition,
define the dynamic cross correlation between s0�t� and
s1�t� /s2�t� as

Rs1s2,s0
��� = 

s1�t�s2�t�s0�t + ����t, �7�

where � represents the correlation time. In simulations, this
function is normalized to

R��� =
Rs1s1,s0

���

	Rs1s2,s1s2
�0�	Rs0,s0

�0�
. �8�

In the presence of intrinsic noise only, by complex calcula-
tions we obtain the analytic expression of the dynamic cross-
correlation function �also see the Appendix� denoted by
Rin���

AND (intrinsic noise) upwards convex

downwards convex

AND (intrinsic and
extrinsic noise)

OR (intrinsic noise)

OR (intrinsic and
extrinsic noise)

FIG. 2. �Color online� Geometric characteristics of dynamic
cross correlations for the phage-� operon, where 103 cells are mea-
sured and error bars described by the standard variance are shown.
There is an anticorrelation relationship between the convexity of
dynamic cross-correlation curves for AND and OR operations.
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Rin��� =
g12�1

2�2
2

4
2��2 − 
2�2��e−�� −

2

�3e−2�� +
1

� − 2

e−2
� +

2

�
e−��+
��, � � 0


2

3�3e2�� +
1

� + 2

e2
� −

2


��2� + 
�
e��+
��, � � 0,� �9�

where �=− 4��+
���−
�2�3�2+12
�+4
2�
3�3��2−4
2��2�+
� is a constant depending

on both � and 
. Note that the sign of g12 is opposite for the
AND and OR operations �refer to Fig. 3�. The simple analy-
sis shows that Rin��� has one peak at some small �m0. In
addition, the convexity of Rin��� at a small interval of
�m0 but close to �=0 is also anticorrelative for the two
logic operations.

In the simultaneous presence of extrinsic and intrinsic
noises, the total un-normalized cross-correlation function can
be expressed in the form of

Rs1s2,s0
��� = Rin��� + Rex��� + Rmix��� , �10�

where the expression of Rin��� is given in Eq. �9�, and

Rex��� =
g11 + 2g12 + g22

16�7 �E
4��

152

27
e−�� − �5 + 4�� + �2�2�e−2�� , � � 0

17 − 24�� + 9�2�2

27
e2��, � � 0,� �11�

Rmix��� = a2���
3� + 


�2� + 
�2 +
� + 



2 −
22


9�2e−�� +

�2 + ���

�2 e−2�� −
� + 
�1 + ���


2 e−��+
��� , � � 0

−

�4 − 3���

9�2 e2�� +
3� + 


�2� + 
�2e��+
��, � � 0,� �12�

with a2=
��g11+g12��1

2+�g12+g22��2
2��E

2

8
��2−
2��3 . The derivation of all the
above analytic expressions is put in the Appendix. Under
some conditions �e.g., in the active region of transcription
factors, see the numerical results in the next subsection�, the
dynamic cross-correlation function Rs1s2,s0

��� has one peak at
some small �m0. In addition, the convexity of Rs1s2,s0

��� at
a small interval of �m0 but close to �=0 is also anticor-
relative for the two logic operations. In particular, the con-
vexity of Rex��� has the anticorrelation for AND and OR
gates in the presence of the extrinsic noise only.

To that end, we have analytically verified that the three-
point dynamic cross-correlation function is upward convex
for the AND operation, whereas downward convex for the
OR operation, whichever sources of noise �intrinsic or ex-
trinsic and both�. Numerical simulation will further verify it
�see the subsection for details�.

C. Numerical results

If the binding and unbinding of transcription factors to the
DNA sites are taken to be fast, CRIF �1,5,24,30–34� can be
set as

CRIF�S1,S2�

= �0
r0 + r1�S1/K1�n + r2�S2/K2�n + r12�S1/K1�n�S2/K2�n

1 + �S1/K1�n + �S2/K2�n + �S1/K1�n�S2/K2�n ,

�13�

where �0 describes the dimensionless transcription rate,
Ki�i=1,2� is the �equilibrium� dissociation constant for the
binding of the transcription factor S1�i=1,2�, and n is the
Hill coefficient, which describes the cooperativity. For AND
gate, both regulators must be bound to initiate transcription
so r0=r1=r2=0 and r12=1, whereas for OR gate, binding of

AND

OR

FIG. 3. �Color online� The second-order mixed-partial deriva-
tives �g12� with respect to S1 and S2. Parameter values are �0=1,
n=2, and K=K1=K2=100.
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either regulator enables the maximal production so that r0
=0 and r1=r2=r12=1.The mixed-partial derivative is

g12 �
�CRIF�S1,S2�

�S1 � S2

=
�r0 + r12 − r1 − r2��0n2�S1/K1�n�S2/K2�n

S1S2�1 + �S1/K1�n�2�1 + �S2/K2�n�2 . �14�

Figure 3 shows the dependence of the second-order mixed-
partial derivatives �g12� on the input signal concentrations.
This figure can help us find the active region.

Figure 4�a� shows that the extrinsic noise does not influ-
ence the convexity of the correlation function R��� for both
logic operations, where the theoretical results are in good
accord with the numerical results. Furthermore, Fig. 4�b�
shows that the convexity of R��� is robust to noise in the
active region of the two input signals �here, for the active
region we mean that concentrations of the input signals are
beyond 20% of their maximal values �25�� since the two-
order derivative of R��� evaluated at the peak point, the sign
of which describes the local convexity of R���, is always
negative �i.e., upward convex� for the AND operation,
whereas positive �i.e., downward convex� for the OR opera-
tion. Figure 4�c� shows an example that in the case of OR
gate, the extrinsic noise can shift the dynamic cross-

correlation curve upward such that the value of R��� at the
zero correlation time R�0� may be more than zero. The com-
bination of Fig. 4�a� and 4�c� indicates that the static cross
correlation �i.e., the cross correlation at the zero correlation
time� does not have anticorrelation for AND and OR opera-
tions, but the convexity of the dynamic cross-correlation
curves still has anticorrelation. In this case, Warmflash and
Dinner’s approach of detecting modes of combinatorial regu-
lation is invalid. These results indicate that dynamic cross
correlations can have more advantages than static cross cor-
relations for signatures of combinatorial regulation in gene
expression noise.

IV. CONCLUSION AND DISCUSSIONS

We have shown that the dynamic cross-correlation func-
tions for AND and OR operations in gene expression noise
have apparently distinct geometric characteristics �convex-
ity�. Such a difference is qualitative, depending neither on
specific models nor on the sources of noise and, hence, the
essential difference reflected by the modes of combinatorial
regulation. More importantly, since the dynamic correlation
function utilizes statistics of the naturally arising fluctuations
in the copy number of the species, its geometric characteris-
tics can in turn help us efficiently detect signatures of com-
binatorial regulation with available experimental data. This is
useful because proximity in DNA binding is not sufficient to
infer combinatorial interactions, and they cannot be readily
probed by traditional methods �e.g., knockouts� or high-
throughput expression assays �e.g., microarray data�. Since
stochastic fluctuations or noise exist inherently in biochemi-
cal reactions, using noise rather than external interference
means to mine bioinformation related to gene regulation
would provide a new research line. Regarding this aspect,
there have been some works, e.g., Cox et al. used noise to
characterize some genetic circuits �35�, Dunlop et al. used
correlation in gene expression noise to reveal the activity
states of regulatory links �17�, and Warmflash and Dinner
used static cross correlations to detect signatures of combi-
natorial regulation in intrinsic biological noise �15�. We uti-
lized dynamic cross correlations based on the nature of noise
correlation to identify the modes of combinatorial regulation
in intrinsic or extrinsic noise or both. In contrast to Warm-
flash and Dinner’s approach, our approach would have some
advantages since dynamic cross correlations can in general
provide more information about gene-gene correlation in ex-
pression than static cross correlations, as shown above.

The method of dynamic cross correlation can also be ex-
tended to other situations of logic operations �ANDN, ORN,
NAND, and NOR�. For example, consider a system with two
input TFs and the output of a gene. If both TFs are activators,
this case has been studied in this paper; if both are repres-
sors, our method can still show that the dynamic correlation
function R��� is upward convex for NOR, whereas down-
ward convex for NAND; if one TF is activator and the other
is repressor, the R��� is upward convex for ANDN, whereas
downward convex for ORN. In the cases of XOR and EQU,
however, the approach will be invalid since the input TFs
may be activator or repressor. Finally, the approach of dy-

AND( )

AND( )

OR( )

OR( )

(a) (b)

S
20

S
80

AND

OR

(c)

OR( )

OR( )

FIG. 4. �Color online� Description of dynamic cross correlations
in the modeled system. �a� The geometric characteristic of the nor-
malized correlation function R���, where K=100 nM, 

=0.02 /min, n=2, �=0.01 /min, �0=4, �1=1 mol /cell /min, �2

=1 mol /cell /min, and �0=�1=�2=0.02. The empty circles repre-
sent simulated results, whereas the symbols indicated in the figure
represent theoretical results; �b� the dependence of the two-order
derivative of the correlation function evaluated at the peak point
denoted by R���m� on the noise intensity �, where �=�0=�1=�2,
�E=� /20, S=S1=S2, and the other parameters are similar to those
in �a�. S20 and S80 represent 20% and 80% maximal values of the
input signal concentrations, respectively. �c� An example that in the
case of OR gate, the extrinsic noise can shift the dynamic cross-
correlation curve upward such that the value of R��� at the zero
correlation time R�0� may be more than zero, where some of pa-
rameter values are slightly modified in contrast to those in �a� or �c�.
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namic cross correlation can be applied to other biological
networks, e.g., RNA logic devices �36�, nucleic acid logic
circuits �37�, signaling protein logic modules �38�, to identify
the types of logic operations.

Except for inferring synergies between regulators, the
idea of dynamic correlation �e.g., two-point dynamic cross
correlations introduced in Refs. �17,39�� can even be used to
determine the direction and relationship of interactions be-
tween arbitrary two regulators, i.e., to determine who regu-
lates whom and who activates/represses whom. In fact, we
have shown that there is a time lag ��m� between the values
of the dynamic cross-correlation function at the extreme
point and the zero of the correlation time. Since the input
regulator S1 or S2 actively regulates the expression of a target
gene, we have �m0. Practically, we can also calculate the
time-correlation lag for arbitrarily two regulators. For ex-
ample, we denote by A and B two regulators and assume that
A acts on B without considering autoregulation. We compute
the cross-correlation function between them with the time
lag �m. If �m0, this implies that A enhances B whereas if
�m�0, this implies that A represses B. Apparently, such an
inference approach can be extended to the case of arbitrarily
many regulators and, thus, can infer the direction of interac-
tions among them.

APPENDIX: THE DERIVATION OF DYNAMIC
CROSS-CORRELATION FUNCTIONS

The purpose of this appendix is to derive all the analytic
expressions given in the main text. From Eq. �6�, we have

si�t� = si�0�e−�t + �
0

t

e−��t−t1�E�t1�dt1 + �
0

t

e−��t−t1�Ii�t1�dt1,

i = 1,2,

s0�t� = s0�0�e−�t − a0�
0

t

e−��t−t1�dt1 + �
0

t

e−��t−t1�E�t1�dt1

+ �
0

t

e−��t−t1�I0�t1�dt1 + g1�
0

t

e−��t−t1�s1�t1�dt1

+ g2�
0

t

e−��t−t1�s2�t1�dt1 +
g11

2
�

0

t

e−��t−t1�s1
2�t1�dt1

+ g12�
0

t

e−��t−t1�s1�t1�s2�t1�dt1

+
g22

2
�

0

t

e−��t−t1�s2
2�t1�dt1.

Our assumptions to noise imply

Rs1s2,s0
��� � 

s1�t�s2�t�s0�t + ����t =��s1�t�s2�t��−

a0

�
+

g11

2
�

0

t+�

e−��t+�−t1�s1
2�t1�dt1 + g12�

0

t+�

e−��t+�−t1�s1�t1�s2�t1�dt1

+
g22

2
�

0

t+�

e−��t+�−t1�s2
2�t1�dt1��

t

= lim
t→�
�−

a0

�

s1�t�s2�t�� + e−��t+���

0

t+�

e�t1�g11

2

s1�t�s2�t�s1

2�t1�� + g12
s1�t�s2�t�s1�t1�s2�t1�� +
g22

2

s1�t�s2�t�s2

2�t1��dt1� .

Since the cross correlation defined above does not depend on
initial conditions, we may set si�0�=0, i=0,1 ,2 �in other
words, the initial values do not affect the resulting value of
the dynamic cross correlation�. Thus, we can express the
cross correlation as

Rs1s2,s0
��� = lim

t→�
e−��t+���

0

t+�

e�t1�
j=1

6

Aj�t1�dt1 − a , �A1�

where

a =
a0

�
lim
t→�


s1�t�s2�t�� =
a0

�
lim
t→�

e−2�t�
0

t �
0

t

e��t1+t2�

�
E�t1�E�t2��dt1dt2,

a0 =
g11 + 2g12 + g22

2
lim
t→�

e−2�t�
0

t �
0

t

e��t1+t2�
E�t1�E�t2��dt1dt2

+
1

2
lim
t→�

e−2�t�
0

t �
0

t

e��t1+t2��g11
I1�t1�I1�t2��

+ g22
I2�t1�I2�t2���dt1dt2,

A1�t1� =
g11 + 2g12 + g22

2
e−2��t+t1��

0

t �
0

t �
0

t1 �
0

t1

e��t2+t3+t4+t5�

�
E�t2�E�t3�E�t4�E�t5��dt2dt3dt4dt5,
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A2�t1� = �g11 + g12�e−2��t+t1��
0

t �
0

t �
0

t1 �
0

t1

e��t2+t3+t4+t5�

�
E�t2�E�t4�I1�t3�I1�t5��dt2dt3dt4dt5,

A3�t1� = �g12 + g22�e−2��t+t1��
0

t �
0

t �
0

t1 �
0

t1

e��t2+t3+t4+t5�

�
E�t2�E�t4�I2�t3�I2�t5��dt2dt3dt4dt5,

A4�t1� =
g11

2
e−2��t+t1��

0

t �
0

t �
0

t1 �
0

t1

e��t2+t3+t4+t5�

�
E�t2�E�t3�I1�t4�I1�t5��dt2dt3dt4dt5,

A5�t1� =
g22

2
e−2��t+t1��

0

t �
0

t �
0

t1 �
0

t1

e��t2+t3+t4+t5�

�
E�t2�E�t3�I2�t4�I2�t5��dt2dt3dt4dt5,

A6�t1� = g12e
−2��t+t1��

0

t �
0

t �
0

t1 �
0

t1

e��t2+t3+t4+t5�

�
I1�t2�I1�t4�I2�t3�I2�t5��dt2dt3dt4dt5.

Note that calculating the higher-order average of the noise E
can be concluded as calculating its two-order average, thus,
yielding that


E�t2�E�t3�E�t4�E�t5�� = 
E�t2�E�t3��
E�t4�E�t5��

+ 
E�t2�E�t4��
E�t3�E�t5��

+ 
E�t2�E�t5��
E�t3�E�t4��

=
�E

4

4�2 �e−���t2−t3�+�t4−t5�� + e−���t2−t4�+�t3−t5��

+ e−���t2−t5�+�t3−t4��� . �A2�

In addition, using the assumptions to noise we can have


E��1�E��2�� =
�E

2

2�
e−���1−�2�, 
Ii��1�Ii��2�� =

�i
2

2

e−
��1−�2�,

�A3�


E��1�E��2�Ii��3�Ii��4�� = 
E��1�E��2��
Ii��3�Ii��4��

=
�E

2

2�
e−���1−�2� +

�i
2

2

e−
��3−�4�,

�A4�

i = 1,2,


I1�t2�I1�t4�I2�t3�I2�t5�� = 
I1�t2�I1�t4��
I2�t3�I2�t5��

=
�1

2�2
2

4
2 e−
��t2−t4�+�t3−t5��. �A5�

The substitution of Eqs. �A2�–�A5� into the expressions of
A1-A6, a and a0, and further into Rs1s2,s0

��� yields

Rs1s2,s0
��� = lim

t→�
e−��t+���

0

t+�

e�t1�B1�t1� + B2�t1� + B3�t1�

+ B4�t1��dt1 − a , �A6�

where

B1�t1� =
g11 + 2g12 + g22

8�2 �E
4�F1�t,t�F1�t1,t1� + 2F2

2�t,t1�� ,

�A7�

B2�t1� =
�g11 + g12��1

2 + �g12 + g22��2
2

4�

�E

2F2�t,t1�F4�t,t1� ,

�A8�

B3�t1� =
g11�1

2 + g22�2
2

8�

�E

2F1�t,t�F3�t1,t1� , �A9�

B4�t1� =
g12�1

2�2
2

4
2 F4
2�t,t1� , �A10�

a =
�E

2

8�2 lim
t→�

� �g11 + 2g12 + g22��E
2

�
F1

2�t,t�

+
g11�1

2 + g22�2
2

k
F1�t,t�F3�t,t� , �A11�

with

F1�t,t� � e−2�t�
0

t �
0

t

e��t2+t3−�t2−t3��dt2dt3, �A12�

F2�t,t1� � e−��t+t1��
0

t �
0

t1

e��t2+t3−�t2−t3��dt2dt3, �A13�

F3�t,t� � e−2�t�
0

t �
0

t

e��t2+t3�−
�t2−t3�dt2dt3, �A14�

F4�t,t1� � e−��t+t1��
0

t �
0

t1

e��t2+t3�−
�t2−t3�dt2dt3. �A15�

By calculating these basic integrals, we can obtain the ex-
pressions of functions Bi�t�, that is,
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B1�t1� �
g11 + 2g12 + g22

8�2 �E
4�

1

4�4 + 2���t − t1� + 1

2�2 2

e−2��t−t1�, 0 � t1 � t

1

4�4 + 2���t1 − t� + 1

2�2 2

e−2��t1−t�, t1  t , � �A16�

B2�t1� �
��g11 + g12��1

2 + �g12 + g22��2
2��E

2

4�
 �
1 + ��t − t1�
2�2��2 − 
2��−




�
e−2��t−t1� + e−��+
��t−t1� , 0 � t1 � t

1 + ��t1 − t�
2�2��2 − 
2��−




�
e−2��t1−t� + e−��+
��t1−t� , t1  t , � �A17�

B3�t1� �
�g11�1

2 + g22�2
2��E

2

16
�� + 
��4 , �A18�

B4�t1� �
g12�1

2�2
2

4
2��2 − 
2�2��e−
�t−t1� −



�
e−��t−t1�2

, 0 � t1 � t

�e−
�t1−t� −



�
e−��t1−t�2

, t1  t , � �A19�

a =
�g11 + 2g12 + g22��E

4

32�7 +
�g11�1

2 + g22�2
2��E

2

16
�� + 
��5 , �A20�

where “�” means that the resulting expressions do not influence the limit value in Eq. �A6�. To that end, we can easily derive
the expression of Rs1s2,s0

��� in Eq. �A6�, as shown in the main text. The normalization factor can be similarly derived.
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